/*

Copyright (c) 2006-2012, Arvid Norberg
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in
      the documentation and/or other materials provided with the distribution.
    * Neither the name of the author nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

*/

#include "libtorrent/pch.hpp"

#include <vector>
#include <iterator> // std::distance()
#include <algorithm> // std::copy, std::remove_copy_if
#include <functional>
#include <numeric>
#include <boost/cstdint.hpp>
#include <boost/bind.hpp>

#include "libtorrent/kademlia/routing_table.hpp"
#include "libtorrent/broadcast_socket.hpp" // for cidr_distance
#include "libtorrent/session_status.hpp"
#include "libtorrent/kademlia/node_id.hpp"
#include "libtorrent/session_settings.hpp"
#include "libtorrent/time.hpp"

using boost::uint8_t;

namespace libtorrent { namespace dht
{

#ifdef TORRENT_DHT_VERBOSE_LOGGING
TORRENT_DEFINE_LOG(table)
#endif

routing_table::routing_table(node_id const& id, int bucket_size
	, dht_settings const& settings)
	: m_bucket_size(bucket_size)
	, m_settings(settings)
	, m_id(id)
	, m_last_bootstrap(min_time())
	, m_last_refresh(min_time())
	, m_last_self_refresh(min_time())
{
}

int routing_table::bucket_limit(int bucket) const
{
	if (!m_settings.extended_routing_table) return m_bucket_size;

	int size_exceptions[] = {16, 8, 4, 2};
	if (bucket < sizeof(size_exceptions)/sizeof(size_exceptions[0]))
		return m_bucket_size * size_exceptions[bucket];
	return m_bucket_size;
}

void routing_table::status(session_status& s) const
{
	boost::tie(s.dht_nodes, s.dht_node_cache) = size();
	s.dht_global_nodes = num_global_nodes();

	ptime now = time_now();

	for (table_t::const_iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		dht_routing_bucket b;
		b.num_nodes = i->live_nodes.size();
		b.num_replacements = i->replacements.size();
		b.last_active = total_seconds(now - i->last_active);
		s.dht_routing_table.push_back(b);
	}
}

boost::tuple<int, int> routing_table::size() const
{
	int nodes = 0;
	int replacements = 0;
	for (table_t::const_iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		nodes += i->live_nodes.size();
		replacements += i->replacements.size();
	}
	return boost::make_tuple(nodes, replacements);
}

size_type routing_table::num_global_nodes() const
{
	int deepest_bucket = 0;
	int deepest_size = 0;
	for (table_t::const_iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		deepest_size = i->live_nodes.size(); // + i->replacements.size();
		if (deepest_size < m_bucket_size) break;
		// this bucket is full
		++deepest_bucket;
	}

	if (deepest_bucket == 0) return 1 + deepest_size;

	if (deepest_size < m_bucket_size / 2) return (size_type(1) << deepest_bucket) * m_bucket_size;
	else return (size_type(2) << deepest_bucket) * deepest_size;
}

#if (defined TORRENT_DHT_VERBOSE_LOGGING || defined TORRENT_DEBUG) && TORRENT_USE_IOSTREAM

void routing_table::print_state(std::ostream& os) const
{
	os << "kademlia routing table state\n"
		<< "bucket_size: " << m_bucket_size << "\n"
		<< "global node count: " << num_global_nodes() << "\n"
		<< "node_id: " << m_id << "\n\n";

	os << "number of nodes per bucket:\n-- live ";
	for (int i = 8; i < 160; ++i)
		os << "-";
	os << "\n";

	int max_size = bucket_limit(0);
	for (int k = 0; k < max_size; ++k)
	{
		for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
			i != end; ++i)
		{
			os << (int(i->live_nodes.size()) > (max_size - 1 - k) ? "|" : " ");
		}
		os << "\n";
	}
	for (int i = 0; i < 160; ++i) os << "+";
	os << "\n";

	for (int k = 0; k < m_bucket_size; ++k)
	{
		for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
			i != end; ++i)
		{
			os << (int(i->replacements.size()) > k ? "|" : " ");
		}
		os << "\n";
	}
	os << "-- cached ";
	for (int i = 10; i < 160; ++i)
		os << "-";
	os << "\n\n";

	os << "nodes:\n";
	int bucket_index = 0;
	for (table_t::const_iterator i = m_buckets.begin(), end(m_buckets.end());
		i != end; ++i, ++bucket_index)
	{
//		if (i->live_nodes.empty()) continue;
		os << "=== BUCKET == " << bucket_index
			<< " == " << total_seconds(time_now() - i->last_active)
			<< " seconds ago ===== \n";
		for (bucket_t::const_iterator j = i->live_nodes.begin()
			, end(i->live_nodes.end()); j != end; ++j)
		{
			os << " id: " << j->id
				<< " rtt: " << j->rtt
				<< " ip: " << j->ep()
				<< " fails: " << j->fail_count()
				<< " pinged: " << j->pinged()
				<< " dist: " << distance_exp(m_id, j->id)
				<< "\n";
		}
	}
}

#endif

void routing_table::touch_bucket(node_id const& target)
{
	table_t::iterator i = find_bucket(target);
	i->last_active = time_now();
}

// returns true if lhs is in more need of a refresh than rhs
bool compare_bucket_refresh(routing_table_node const& lhs, routing_table_node const& rhs)
{
	// add the number of nodes to prioritize buckets with few nodes in them
	return lhs.last_active + seconds(lhs.live_nodes.size() * 5)
		< rhs.last_active + seconds(rhs.live_nodes.size() * 5);
}

bool routing_table::need_refresh(node_id& target) const
{
	ptime now = time_now();

	// refresh our own bucket once every 15 minutes
	if (now - m_last_self_refresh > minutes(15))
	{
		m_last_self_refresh = now;
		target = m_id;
#ifdef TORRENT_DHT_VERBOSE_LOGGING
		TORRENT_LOG(table) << "need_refresh [ bucket: self target: " << target << " ]";
#endif
		return true;
	}

	if (m_buckets.empty()) return false;

	table_t::const_iterator i = std::min_element(m_buckets.begin(), m_buckets.end()
		, &compare_bucket_refresh);

	if (now - i->last_active < minutes(15)) return false;
	if (now - m_last_refresh < seconds(45)) return false;

	// generate a random node_id within the given bucket
	target = generate_random_id();
	int num_bits = std::distance(m_buckets.begin(), i) + 1;
	node_id mask(0);
	for (int i = 0; i < num_bits; ++i) mask[i/8] |= 0x80 >> (i&7);

	// target = (target & ~mask) | (root & mask)
	node_id root = m_id;
	root &= mask;
	target &= ~mask;
	target |= root;

	// make sure this is in another subtree than m_id
	// clear the (num_bits - 1) bit and then set it to the
	// inverse of m_id's corresponding bit.
	target[(num_bits - 1) / 8] &= ~(0x80 >> ((num_bits - 1) % 8));
	target[(num_bits - 1) / 8] |=
		(~(m_id[(num_bits - 1) / 8])) & (0x80 >> ((num_bits - 1) % 8));

	TORRENT_ASSERT(distance_exp(m_id, target) == 160 - num_bits);

#ifdef TORRENT_DHT_VERBOSE_LOGGING
	TORRENT_LOG(table) << "need_refresh [ bucket: " << num_bits << " target: " << target << " ]";
#endif
	m_last_refresh = now;
	return true;
}

void routing_table::replacement_cache(bucket_t& nodes) const
{
	for (table_t::const_iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		std::copy(i->replacements.begin(), i->replacements.end()
			, std::back_inserter(nodes));
	}
}

routing_table::table_t::iterator routing_table::find_bucket(node_id const& id)
{
//	TORRENT_ASSERT(id != m_id);

	int num_buckets = m_buckets.size();
	if (num_buckets == 0)
	{
		m_buckets.push_back(routing_table_node());
		// add 160 seconds to prioritize higher buckets (i.e. buckets closer to us)
		m_buckets.back().last_active = min_time() + seconds(160);
		++num_buckets;
	}

	int bucket_index = (std::min)(159 - distance_exp(m_id, id), num_buckets - 1);
	TORRENT_ASSERT(bucket_index < int(m_buckets.size()));
	TORRENT_ASSERT(bucket_index >= 0);

	table_t::iterator i = m_buckets.begin();
	std::advance(i, bucket_index);
	return i;
}

bool compare_ip_cidr(node_entry const& lhs, node_entry const& rhs)
{
	TORRENT_ASSERT(lhs.addr.is_v4() == rhs.addr.is_v4());
	// the number of bits in the IPs that may match. If
	// more bits that this matches, something suspicious is
	// going on and we shouldn't add the second one to our
	// routing table
	int cutoff = rhs.addr.is_v4() ? 8 : 64;
	int dist = cidr_distance(lhs.addr, rhs.addr);
	return dist <= cutoff;
}

node_entry* routing_table::find_node(udp::endpoint const& ep, routing_table::table_t::iterator* bucket)
{
	for (table_t::iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		for (bucket_t::iterator j = i->replacements.begin();
			j != i->replacements.end(); ++j)
		{
			if (j->addr != ep.address()) continue;
			if (j->port != ep.port()) continue;
			*bucket = i;
			return &*j;
		}
		for (bucket_t::iterator j = i->live_nodes.begin();
			j != i->live_nodes.end(); ++j)
		{
			if (j->addr != ep.address()) continue;
			if (j->port != ep.port()) continue;
			*bucket = i;
			return &*j;
		}
	}
	*bucket = m_buckets.end();
	return 0;
}

bool routing_table::add_node(node_entry e)
{
	if (m_router_nodes.find(e.ep()) != m_router_nodes.end()) return false;

	bool ret = need_bootstrap();

	// don't add ourself
	if (e.id == m_id) return ret;

	// do we already have this IP in the table?
	if (m_ips.find(e.addr.to_v4().to_bytes()) != m_ips.end())
	{
		// this exact IP already exists in the table. It might be the case
		// that the node changed IP. If pinged is true, and the port also
		// matches the we assume it's in fact the same node, and just update
		// the routing table
		// pinged means that we have sent a message to the IP, port and received
		// a response with a correct transaction ID, i.e. it is verified to not
		// be the result of a poioned routing table

		node_entry* existing = 0;
		table_t::iterator existing_bucket;
		if (!e.pinged() || (existing = find_node(e.ep(), &existing_bucket)) == 0)
		{
			// the new node is not pinged, or it's not an existing node
			// we should ignore it, unless we allow duplicate IPs in our
			// routing table
			if (m_settings.restrict_routing_ips)
			{
#ifdef TORRENT_DHT_VERBOSE_LOGGING
				TORRENT_LOG(table) << "ignoring node (duplicate IP): "
					<< e.id << " " << e.addr;
#endif
				return ret;
			}
		}
		if (e.pinged() && existing)
		{
			// if the node ID is the same, just update the failcount
			// and be done with it
			if (existing->id == e.id)
			{
				existing->timeout_count = 0;
				existing->update_rtt(e.rtt);
				return ret;
			}

			// delete the current entry before we instert the new one
			bucket_t& b = existing_bucket->live_nodes;
			bucket_t& rb = existing_bucket->replacements;
			bool done = false;
			for (bucket_t::iterator i = b.begin(), end(b.end());
				i != end; ++i)
			{
				if (i->addr != e.addr || i->port != e.port) continue;
   #ifdef TORRENT_DHT_VERBOSE_LOGGING
				TORRENT_LOG(table) << "node ID changed, deleting old entry: "
					<< i->id << " " << i->addr;
	#endif
				b.erase(i);
				done = true;
				break;
			}
			if (!done)
			{
				for (bucket_t::iterator i = rb.begin(), end(rb.end());
					i != end; ++i)
				{
					if (i->addr != e.addr || i->port != e.port) continue;
	#ifdef TORRENT_DHT_VERBOSE_LOGGING
					TORRENT_LOG(table) << "node ID changed, deleting old entry: "
						<< i->id << " " << i->addr;
	#endif
					rb.erase(i);
					done = true;
					break;
				}
			}
			TORRENT_ASSERT(done);
			m_ips.erase(e.addr.to_v4().to_bytes());
		}
	}
	
	table_t::iterator i = find_bucket(e.id);
	bucket_t& b = i->live_nodes;
	bucket_t& rb = i->replacements;
	int bucket_index = std::distance(m_buckets.begin(), i);
	int bucket_size_limit = bucket_limit(bucket_index);

	bucket_t::iterator j;

	// if the node already exists, we don't need it
	j = std::find_if(b.begin(), b.end()
		, boost::bind(&node_entry::id, _1) == e.id);

	if (j != b.end())
	{
		// a new IP address just claimed this node-ID
		// ignore it
		if (j->addr != e.addr || j->port != e.port) return ret;

		// we already have the node in our bucket
		TORRENT_ASSERT(j->id == e.id && j->ep() == e.ep());
		j->timeout_count = 0;
		j->update_rtt(e.rtt);
//		TORRENT_LOG(table) << "updating node: " << i->id << " " << i->addr;
		return ret;
	}

	// if this node exists in the replacement bucket. update it and
	// pull it out from there. We may add it back to the replacement
	// bucket, but we may also replace a node in the main bucket, now
	// that we have an updated RTT
	j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::id, _1) == e.id);
	if (j != rb.end())
	{
		// a new IP address just claimed this node-ID
		// ignore it
		if (j->addr != e.addr || j->port != e.port) return ret;
		TORRENT_ASSERT(j->id == e.id && j->ep() == e.ep());
		j->timeout_count = 0;
		j->update_rtt(e.rtt);
		e = *j;
		m_ips.erase(j->addr.to_v4().to_bytes());
		rb.erase(j);
	}

	if (m_settings.restrict_routing_ips)
	{
		// don't allow multiple entries from IPs very close to each other
		j = std::find_if(b.begin(), b.end(), boost::bind(&compare_ip_cidr, _1, e));
		if (j != b.end())
		{
			// we already have a node in this bucket with an IP very
			// close to this one. We know that it's not the same, because
			// it claims a different node-ID. Ignore this to avoid attacks
#ifdef TORRENT_DHT_VERBOSE_LOGGING
			TORRENT_LOG(table) << "ignoring node: " << e.id << " " << e.addr
				<< " existing node: "
				<< j->id << " " << j->addr;
#endif
			return ret;
		}

		j = std::find_if(rb.begin(), rb.end(), boost::bind(&compare_ip_cidr, _1, e));
		if (j != rb.end())
		{
			// same thing but for the replacement bucket
#ifdef TORRENT_DHT_VERBOSE_LOGGING
			TORRENT_LOG(table) << "ignoring (replacement) node: " << e.id << " " << e.addr
				<< " existing node: "
				<< j->id << " " << j->addr;
#endif
			return ret;
		}
	}

	// if there's room in the main bucket, just insert it
	if (int(b.size()) < bucket_size_limit)
	{
		if (b.empty()) b.reserve(bucket_size_limit);
		b.push_back(e);
		m_ips.insert(e.addr.to_v4().to_bytes());
//		TORRENT_LOG(table) << "inserting node: " << e.id << " " << e.addr;
		return ret;
	}

	// if there is no room, we look for nodes that are not 'pinged',
	// i.e. we haven't confirmed that they respond to messages.
	// Then we look for nodes marked as stale
	// in the k-bucket. If we find one, we can replace it.
	// as the last replacement strategy, we look for nodes with the
	// highest RTT, and if it's higher than the new node, we replace it

	// can we split the bucket?
	bool can_split = false;

	if (e.pinged() && e.fail_count() == 0)
	{
		// only nodes that are pinged and haven't failed
		// can split the bucket, and we can only split
		// the last bucket
		can_split = (boost::next(i) == m_buckets.end() && m_buckets.size() < 159);

		// if the node we're trying to insert is considered pinged,
		// we may replace other nodes that aren't pinged

		j = std::find_if(b.begin(), b.end(), boost::bind(&node_entry::pinged, _1) == false);

		if (j != b.end() && !j->pinged())
		{
			// j points to a node that has not been pinged.
			// Replace it with this new one
			m_ips.erase(j->addr.to_v4().to_bytes());
			*j = e;
			m_ips.insert(e.addr.to_v4().to_bytes());
//			TORRENT_LOG(table) << "replacing unpinged node: " << e.id << " " << e.addr;
			return ret;
		}

		// A node is considered stale if it has failed at least one
		// time. Here we choose the node that has failed most times.
		// If we don't find one, place this node in the replacement-
		// cache and replace any nodes that will fail in the future
		// with nodes from that cache.

		j = std::max_element(b.begin(), b.end()
				, boost::bind(&node_entry::fail_count, _1)
				< boost::bind(&node_entry::fail_count, _2));

		if (j != b.end() && j->fail_count() > 0)
		{
			// i points to a node that has been marked
			// as stale. Replace it with this new one
			m_ips.erase(j->addr.to_v4().to_bytes());
			*j = e;
			m_ips.insert(e.addr.to_v4().to_bytes());
//			TORRENT_LOG(table) << "replacing stale node: " << e.id << " " << e.addr;
			return ret;
		}

		// in order to keep lookup times small, prefer nodes with low RTTs

		j = std::max_element(b.begin(), b.end()
				, boost::bind(&node_entry::rtt, _1)
				< boost::bind(&node_entry::rtt, _2));

		if (j != b.end() && j->rtt > e.rtt)
		{
			m_ips.erase(j->addr.to_v4().to_bytes());
			*j = e;
			m_ips.insert(e.addr.to_v4().to_bytes());
//			TORRENT_LOG(table) << "replacing node with higher RTT: " << e.id << " " << e.addr;
			return ret;
		}
	}

	// if we can't split, try to insert into the replacement bucket

	if (!can_split)
	{
		// if we don't have any identified stale nodes in
		// the bucket, and the bucket is full, we have to
		// cache this node and wait until some node fails
		// and then replace it.

		j = std::find_if(rb.begin(), rb.end()
			, boost::bind(&node_entry::id, _1) == e.id);

		// if the node is already in the replacement bucket
		// just return.
		if (j != rb.end())
		{
			// if the IP address matches, it's the same node
			// make sure it's marked as pinged
			if (j->ep() == e.ep()) j->set_pinged();
			return ret;
		}

		if ((int)rb.size() >= m_bucket_size)
		{
			// if the replacement bucket is full, remove the oldest entry
			// but prefer nodes that haven't been pinged, since they are
			// less reliable than this one, that has been pinged
			j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::pinged, _1) == false);
			if (j == rb.end()) j = rb.begin();
			m_ips.erase(j->addr.to_v4().to_bytes());
			rb.erase(j);
		}

		if (rb.empty()) rb.reserve(m_bucket_size);
		rb.push_back(e);
		m_ips.insert(e.addr.to_v4().to_bytes());
//		TORRENT_LOG(table) << "inserting node in replacement cache: " << e.id << " " << e.addr;
		return ret;
	}

	// this is the last bucket, and it's full already. Split
	// it by adding another bucket
	m_buckets.push_back(routing_table_node());
	// the extra seconds added to the end is to prioritize
	// buckets closer to us when refreshing
	m_buckets.back().last_active = min_time() + seconds(160 - m_buckets.size());
	bucket_t& new_bucket = m_buckets.back().live_nodes;
	bucket_t& new_replacement_bucket = m_buckets.back().replacements;

	// move any node whose (160 - distane_exp(m_id, id)) >= (i - m_buckets.begin())
	// to the new bucket
	int new_bucket_size = bucket_limit(bucket_index + 1);
	for (bucket_t::iterator j = b.begin(); j != b.end();)
	{
		if (distance_exp(m_id, j->id) >= 159 - bucket_index)
		{
			++j;
			continue;
		}
		// this entry belongs in the new bucket
		if (int(new_bucket.size()) < bucket_size_limit)
			new_bucket.push_back(*j);
		else if (int(new_replacement_bucket.size()) < m_bucket_size)
			new_replacement_bucket.push_back(*j);
		j = b.erase(j);
	}

	// split the replacement bucket as well. If the live bucket
	// is not full anymore, also move the replacement entries
	// into the main bucket
	for (bucket_t::iterator j = rb.begin(); j != rb.end();)
	{
		if (distance_exp(m_id, j->id) >= 159 - bucket_index)
		{
			if (int(b.size()) >= bucket_size_limit)
			{
				++j;
				continue;
			}
			b.push_back(*j);
		}
		else
		{
			// this entry belongs in the new bucket
			if (int(new_bucket.size()) < new_bucket_size)
				new_bucket.push_back(*j);
			else if (int(new_replacement_bucket.size()) < m_bucket_size)
				new_replacement_bucket.push_back(*j);
		}
		j = rb.erase(j);
	}

	bool added = false;
	// now insert the new node in the appropriate bucket
	if (distance_exp(m_id, e.id) >= 159 - bucket_index)
	{
		if (int(b.size()) < bucket_size_limit)
		{
			b.push_back(e);
			added = true;
		}
		else if (int(rb.size()) < m_bucket_size)
		{
			rb.push_back(e);
			added = true;
		}
	}
	else
	{
		if (int(new_bucket.size()) < new_bucket_size)
		{
			new_bucket.push_back(e);
			added = true;
		}
		else if (int(new_replacement_bucket.size()) < m_bucket_size)
		{
			new_replacement_bucket.push_back(e);
			added = true;
		}
	}
	if (added) m_ips.insert(e.addr.to_v4().to_bytes());
	return ret;
}

void routing_table::for_each_node(
	void (*fun1)(void*, node_entry const&)
	, void (*fun2)(void*, node_entry const&)
	, void* userdata) const
{
	for (table_t::const_iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		if (fun1)
		{
			for (bucket_t::const_iterator j = i->live_nodes.begin()
				, end(i->live_nodes.end()); j != end; ++j)
				fun1(userdata, *j);
		}
		if (fun2)
		{
			for (bucket_t::const_iterator j = i->replacements.begin()
				, end(i->replacements.end()); j != end; ++j)
				fun2(userdata, *j);
		}
	}
}

void routing_table::node_failed(node_id const& id, udp::endpoint const& ep)
{
	// if messages to ourself fails, ignore it
	if (id == m_id) return;

	table_t::iterator i = find_bucket(id);
	bucket_t& b = i->live_nodes;
	bucket_t& rb = i->replacements;

	bucket_t::iterator j = std::find_if(b.begin(), b.end()
		, boost::bind(&node_entry::id, _1) == id);

	if (j == b.end()) return;

	// if the endpoint doesn't match, it's a different node
	// claiming the same ID. The node we have in our routing
	// table is not necessarily stale
	if (j->ep() != ep) return;
	
	if (rb.empty())
	{
		j->timed_out();

#ifdef TORRENT_DHT_VERBOSE_LOGGING
		TORRENT_LOG(table) << " NODE FAILED"
			" id: " << id <<
			" ip: " << j->ep() <<
			" fails: " << j->fail_count() <<
			" pinged: " << j->pinged() <<
			" up-time: " << total_seconds(time_now() - j->first_seen);
#endif

		// if this node has failed too many times, or if this node
		// has never responded at all, remove it
		if (j->fail_count() >= m_settings.max_fail_count || !j->pinged())
		{
			m_ips.erase(j->addr.to_v4().to_bytes());
			b.erase(j);
		}
		return;
	}

	m_ips.erase(j->addr.to_v4().to_bytes());
	b.erase(j);

	// sort by RTT first, to find the node with the lowest
	// RTT that is pinged
	std::sort(rb.begin(), rb.end()
		, boost::bind(&node_entry::rtt, _1) < boost::bind(&node_entry::rtt, _2));

	j = std::find_if(rb.begin(), rb.end(), boost::bind(&node_entry::pinged, _1));
	if (j == rb.end()) j = rb.begin();
	b.push_back(*j);
	rb.erase(j);
}

void routing_table::add_router_node(udp::endpoint router)
{
	m_router_nodes.insert(router);
}

// we heard from this node, but we don't know if it
// was spoofed or not (i.e. pinged == false)
void routing_table::heard_about(node_id const& id, udp::endpoint const& ep)
{
	add_node(node_entry(id, ep));
}

// this function is called every time the node sees
// a sign of a node being alive. This node will either
// be inserted in the k-buckets or be moved to the top
// of its bucket.
// the return value indicates if the table needs a refresh.
// if true, the node should refresh the table (i.e. do a find_node
// on its own id)
bool routing_table::node_seen(node_id const& id, udp::endpoint ep, int rtt)
{
	return add_node(node_entry(id, ep, rtt, true));
}

bool routing_table::need_bootstrap() const
{
	ptime now = time_now();
	if (now - m_last_bootstrap < seconds(30)) return false;

	for (table_t::const_iterator i = m_buckets.begin()
		, end(m_buckets.end()); i != end; ++i)
	{
		for (bucket_t::const_iterator j = i->live_nodes.begin()
			, end(i->live_nodes.end()); j != end; ++j)
		{
			if (j->confirmed()) return false;
		}
	}
	m_last_bootstrap = now;
	return true;
}

// fills the vector with the k nodes from our buckets that
// are nearest to the given id.
void routing_table::find_node(node_id const& target
	, std::vector<node_entry>& l, int options, int count)
{
	l.clear();
	if (count == 0) count = m_bucket_size;

	table_t::iterator i = find_bucket(target);
	int bucket_index = std::distance(m_buckets.begin(), i);
	int bucket_size_limit = bucket_limit(bucket_index);

	l.reserve(bucket_size_limit);

	table_t::iterator j = i;

	for (; j != m_buckets.end() && int(l.size()) < count; ++j)
	{
		bucket_t& b = j->live_nodes;
		if (options & include_failed)
		{
			copy(b.begin(), b.end()
				, std::back_inserter(l));
		}
		else
		{
			std::remove_copy_if(b.begin(), b.end()
				, std::back_inserter(l)
				, !boost::bind(&node_entry::confirmed, _1));
		}

		if (int(l.size()) >= count)
		{
			// sort the nodes by how close they are to the target
			std::sort(l.begin(), l.end(), boost::bind(&compare_ref
				, boost::bind(&node_entry::id, _1)
				, boost::bind(&node_entry::id, _2), target));

			l.resize(count);
			return;
		}
	}

	// if we still don't have enough nodes, copy nodes
	// further away from us

	if (i == m_buckets.begin())
	{
		// sort the nodes by how close they are to the target
		std::sort(l.begin(), l.end(), boost::bind(&compare_ref
			, boost::bind(&node_entry::id, _1)
			, boost::bind(&node_entry::id, _2), target));
		return;
	}

	j = i;

	do
	{
		--j;
		bucket_t& b = j->live_nodes;
	
		if (options & include_failed)
		{
			std::copy(b.begin(), b.end(), std::back_inserter(l));
		}
		else
		{
			std::remove_copy_if(b.begin(), b.end(), std::back_inserter(l)
				, !boost::bind(&node_entry::confirmed, _1));
		}

		if (int(l.size()) >= count)
		{
			// sort the nodes by how close they are to the target
			std::sort(l.begin(), l.end(), boost::bind(&compare_ref
				, boost::bind(&node_entry::id, _1)
				, boost::bind(&node_entry::id, _2), target));

			l.resize(count);
			return;
		}
	}
	while (j != m_buckets.begin() && int(l.size()) < count);

	// sort the nodes by how close they are to the target
	std::sort(l.begin(), l.end(), boost::bind(&compare_ref
		, boost::bind(&node_entry::id, _1)
		, boost::bind(&node_entry::id, _2), target));

	if (int(l.size()) >= count)
		l.resize(count);
}

} } // namespace libtorrent::dht